A few days ago, I started anew.
- 1' (foot)=12" (inches)
- 1"=12'" (lines)
- 1'"=12 "" (points)
- 1'=12"=144'"=1728""
- 144:10=14 2/5
- 14 2/5*3=42 6/5=43 1/5
< 0' 3" 7'" 6""
< 0' 7" 3'"
< 0' 8" 5'"
of 25
< 1' 4" 10'"
of 1.25
< 0' 1" 3'"
< 0' 11" 5'" 5""5/11
< 0' 5" 8'" 8""8/11
Always presuming that 1=1'.
Now for a theoretical definition:
- a logarithm is not a number, but EITHER a ratio between the (whole number!) potencies of two numbers, the base and the number whose logarithm it is, so that
- if basea=numberb
- then the logarithm is a:b
- OR a geometric irrational proportion that can only be approximated to above
- and furthermore expressed in either case as fractions of an arbitrary length unit, so as to compare with real or virtual counting slides (is that what you call them?) the potencies of numbers, so that multiplication of numbers can by succesful fiction be expressed as addition of potencies and divison by subtraction, potencies by multiplication, roots by division.
No need to dub logarithms numbers in order to understand them, then!
Hans Georg Lundahl
Continued:The fact that there is no such a thing as a 10log of two is also proven by the fact, that the closer approximations to its value - the LESS they have of the definition of logarithm, i e ratio between exponents of EQUAL potencies.
In order to prove this, consider that 87:288=29:96 is a closer upper limit than 44:144=88:288=11:36.
Now, will the potencies 1029 and 296 be more or less equal to each other, than 1011 and 236?
Two96 is
79,228 quadrillions
162,514 trillions
55,647 billions
658,951 millions
950,336,
which is more than 20 quadrillions off the 100,000 quadrllions that form the potency 1029.
Clearly this difference is greater than not just the difference between 1011 and 236, but even greater than any of the number involved in that real inequality and nearest possible equality.
Oh, yes - when I had taken the sweet trouble (like a crosswordpuzzle) of calculating 296 in a few grid systems, I found it quite as worthwile to go up a few potencies of two by doubling.
31:103 is a closer lower limit (closer than 3:10), because
10 quintillions
141,204 quadrillions
801,799 trillions
122,900 billions
345,849 millions
643,008
is greater than 10 quintillions.And the upper limit can be drawn down to 32:106.
The new approximations are:
0' 3" 7'" 4""8/103
0' 3" 7'" 5""35/53
Which I found out in proving that what is thus approximated can be infinitely approximated and never reached because it doesn't exist.
HGL
Résumé of mathematic debates with Voice Of Principle:
- a) He attacks my argument against the regress to infinity "infinity cannot be passed through" as having been refuted by modern mathematical understanding of infinity, also he attacks my logic on logic thread by claiming there is reason that goes counter to logic and is still true
- b) I answer that every number is finite, a multiple of one, and that every number is rational
- c) He counters with saying that Greek math's thought so, but PI and sqrt/2, being irrational, disprove this
- d) I answer that I know very well that PI and "sqrt/2" are irrational, it is the number part of their categorisation I disagree with, since they aren't numbers but size relations
- e) message disappears
- f) when I repeat the point, VoP claims my limited understanding of number cuts me off from understanding the great new "discoveries" of math's since Newton
- g) On a thread on geocentrism/heliocentrism, Rita claims the main argument for heliocentrism is that Copernican hypothesis of Universe makes accurate calculations of planetary movements possible
- h) I counter saying that mathematic fictions can make calculations easier without being true to mathematic realities and give as example the fictitious negative rule of squares (a - b)sq = asq - 2ab + bsq, proving this is geometrical nonsense if taken to the letter, step by step, as contrasted with real rule (a - b)sq = asq - bsq - 2b(a - b), which is true to geometry, involves no supposition of negative numbers existing, but is less handy
- i) VoP claims I misrepresent algebra and claims it doesn't involve any fiction, repeating that my limited understanding of mathematics cuts me off from many great discoveries
- j) I disprove both his points by this thread, calculating the 10logarithms of 2, 3, 4, 5, 8, 9, 25 and 1.25, especially refining the logarithm of 2, while saying that it is not a number and what it really is: a relation, and, since exponents must be whole numbers, a fictitious relation between exponents of 10 and 2 when their powers equal - which Eratesthenes has proved they never do. To substantiate my claim of calculating the log of 2, I show my calculations in part and give the values in duodecimal fractions, corresponding best both to my old dream of making counting slides on a yardstick and to my calculations - and leave it to VoP to convert the duodecimals into decimals to check my accuracy
- k) VoP does not answer, but AbbyLeever, who has not followed my debates does, repeating VoP's misundestanding of my arguments.If he had been a zen buddhist, I think he might have understood my mathematics better - not that that would have saved his soul of course, but it would have been more stimulating on this board.
Hans Georg Lundahl
4 comments:
1 ...on classical Greek mathematics, or logarithms f...
2 ...to AbbyLeever on my classical Greek logarithms
3 AT LONG LAST, VOP!
4 lighting up dialogue with myshkin and finishing it...
retrieved from:
http://www.webcitation.org/5cRam7jOD
See also later two messages, starting with:
... on reality of existence of numbers (and on Pythagoreans and Bruno)
See also, on another blog:
Quote from Aristotle
Two more than two make four - but why?
What are Franctions?
Post a Comment